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Abstract. We consider the steady state operation of wall-cooled, fixed-bed tubular reactors. In
these reactors the temperature rise AT must normally be limited to small fractions of the adiabatic
temperature rise AT, , both to avoid runaway and maintain product selectivity. Yet

AT/AT,y << 1 canonlyoccurif n = tyJt . << 1, where tyir 1S the timescale on which
heat escapes the reactor by "diffusing” to the cooled walls, and t_,_is the imescale over which the
reaction occurs. So here we use asymptotic metnods based on 1| << 1 to analyze the 2-d reactor
equations, and find the radial concentration and temperature profiles to leading order in n. We
then obtain a 1-d model of the reactor by substituting these asymptotically correct profiles into the
reactor equations and averaging over r. This model, the a-model, is identical to ihe standard
(Beek and Singer) 1-d model, except that the reactor's overall heat transfer coefficient U is a
decreasing function of the temperature rise AT. This occurs because as AT increases, the
reaction becomes increasingly concentrated near r =0, causing a decreased heat transfer efficiency
through the reactor's walls. By comparing it with numerical solutions of the original 2-d reactor
equations, we find that the a-model simulates the 2-d equations very accurat:ly, even for highly
sensitive reactors operated near runaway. We also find that a runaway criterion derived from the
a-model predicts the runaway transition of the original 2-d equations accurately, specially for

highly sensitive reactors.



1._Introduction, We consider the steady state operation of wall-cooled, fixed-bed tubular reactors.
Due to their cost, these reactors are normal'y used in industry only for highly exothermic reactions.
For such reactions, the adiabatic temperature rise AT, is typically several hundred degrees K.
Yet reactor runaway occurs when the temperature rise AT reaches roughly RTCZ/E [3-13],

which is typically between 15°K and 80°K. So usually AT is restricted by
1.1 AT/AT,4 ~ RT %EAT,4 << 1

and, as we shall see, AT/AT,4 << 1 can only occur if

1.2 N %t/ tene << 1,

where t,. is the timescale on which heat escapes the reactor by "diffusing” to the cocled walls,
and t.,. is the imescale on which the reactions occur. So here we use asymptotic methods based
on N << | to analyze the reactor.

Specifically, in section 2 we analyze reactors in which a single reaction occurs, and find
the radial concentration and temperature profiles to leading order in 1. Then, in section 3 we
derive a 1-d (z only) model of the reactor by substitutiriz these asymptotically correct profiles into
the reactor equations and averaging out r. This model, the @-model, turns out to be identical to
the standard (Beek and Singer) i-d model [1,2], except that the reactor's overall heat transfer
coefficient U is not constant, but is a decreasing function of the temperature rise AT. This
decreased heat transfer efficiency occurs because the reaction, and so the heat generation, become
increasingly concentrated near r=0 (away from the reactor walls) as AT increases, and is the
reason for the known unreliability [1,5,6] or the Beek and Singer model near runaway. In section

3 we compare the a-model with numerical solutions of the original 2-d reactor equations. We



find that the model agrees very well with the 2-d equations, even for highly sensitive reactors
operated near runaway. There, we also compare these numerical solutions with the runaway
criterion derived from the «-modelin [18]. Finally, in section 4 we briefly consider multiple

reactions, and extend the a-model to these cases.

2. The 2-d Equations, We choose reactant 1 to be a key reactant and define the conversion
X(z.r) by

2.1 clp = (1-X)c!yp,

where p is the density of the reacting fluid, and d is the molar concentration of species j in the
reacting fluid; throughout subscripts O refer to the value at the reactor inlet z =0. For the case of
a single reaction, all concentrations can be calculated from the conversion [1], so we need only
calculate X. Interms of X, the time-independent, pseudo-homogeneous reactor equations are

(1.7]

dug c('))(z = SC(;D(Xn.+ rlx,) + 3D

o
to
=

2.2b BugPocpTz = ATy + }Tr) + (AKX,

inside the reactor 0 < r < r;, 0 < 2 < L; the boundary conditions w..
2.2 X, =0 . T, =0 atr=0

2.2d X, =0 , -AT, = h(T-TC) at r=rp



We assume that the reactants enter at the coolant temperature, so

N
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o
”
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at z=0.

In 2.2, & is the void fraction of the bed (often denoted by €), ug is the fluid velocity at
z=0, and ¢, is the fluid's heat capacity. On the right, J(X.T) is the reaction rate, -AH is the
heat release of the reaction, D is the effective radial diffusivity of matter, and A is the effective
radial conductivity of heat. Finally, h is the heat transfer coefficient at the reactor wall.

To nondimensionalize 2.2a-2.2¢ effectively, let S be a typical value of the reaction

rate. To be definite, we choose

u

2.3a § = max S(XT,).

X
Define the dimensionless O(1) reaction rate S by
2.3b S(X,T) = SX.T/§S.

Then in terms of the new variables

2.3 ¥ = r/rp : 2% = 25/duxcly

the reactor equations become
2. l X 1)( (X O<rcl
2.4a X, = 71—12( rr"‘; p) + 3(XD , r

1
2.4b NT, = T+ r—Tr + QS(X, T , 0<rcel



with
2.4¢ X, =0 , T, =0 atr=0

24d X, =0 , “Tr = y(T-T.) atr=1

and the initial conditions X = 0, T = T, at z=0. Here,

2.5 N = (Pocprr/ASlely)

clearly represcnts the timescale ratio ty;dt.,. .

2.5b Le = A/8pycpD

is the Lewis number, and the constant

2.5¢ Q = (-AH)SrA/A

has the dimension 'K and represents the typical tcmperature rise in the reactor. Finally,
2.5d Y = hrdA

is the reactor's Biot number. Note that

2.6 QM = (-AH)clpgey = ATy

From 2.4b we see that AT can remain much smaller than AT, only if the heat generation is at



least roughly balanced by the radial diffusion of heat. Since S(X,T) ~ O(1), these terms can only
balance when AT ~ O(Q), and thus AT/ATad ~ O(n). So the physical requirement that

AT/AT,y << 1 implies that 1 << 1, as expected.

2.1 Radial profiles, Since n << 1, 2.4a shows that the radial diffusion of matter is much more

rapid than the reaction. So to leading order in 7, the conversion is constant in r

2.7 Xizyn) = X(2) forall r.

To obtain the temperature profile, we set 11 =0 in 2.4b and find

2.8a (rTp)y + IQSX,T) = 0 for O<r<«1

2.8b T, =0 atr=0, -T,=yT-T) ~tr=l

Now this equation can not be solved explicitly for general reaction rates S(X,T). However,

reaction rates generally increase exponentially in T over limited temperature ranges. So consider

the expansicn

2.9a SX.T) = SX,THeAT-D+..
with
2.9b AXT) = 1 log S(X,T)

94 aT ’

around some fixed temperature T. For example, for Arrhenius kinetics

2.10 S(X.T) = a(X)e ERT - a(x)e-emTeAcr.ﬁ+...



with A = E/RT2. Solving 2.8 with the rea-tion rate 2.9, we obtain the radial tsmperature

rrofile

2.11 T(or) =T, + [4a/y - 2log(l-a+ard)//A

where the constant & must satisfy

2.12 8a(1-0)8~4Y = AQSX e AT-To

We shall derive our 1-d reactor model by approximating X(z,r) = X(z) and T(zr) = T(o,r) for

some oz) at each position z in the reactor, and then averaging in r. Note that the Beek and

Singer model is devived essentally the same way [1,2), except that the parabolic profiles
2.13 T@x) = T, + Bl2/y+1 -]
are used instead of the asymptotically correct profiles 2.11.

3. The 1-d Model. To simplify the eventual 1-d model, define the reaction-averaged temperature
T oy
3.1 SXT) = <SXT(or) = SX.TKeAT-D+.>

where < > denotes the average

3.2 ) = Iol 2r £(r) dr .

With the radial temperature profile 2.11, 3.1 yields the relation



33 4oty - log(l-a) = A(T-T,)

between o and the reaction averaged temperature T. Substituting X(z) and T(o,r) into the

reactor equations 2.4, and averaging now gives
3.4a X, = SXD
3.4b <D, = -8/A + QS(X.T).

Now the spatially-averaged temperature <T(c,r)> is very nearly the same as the reacticn-averaged

T. Since n << 1, we replace <T> by T in 3.4b for simplicity. This yields the 1-d model :

3.5a X, = SX.T)
3.5b nT, = -8A + QS(XD),
where

- d -
3.5¢ AXT) = 2plog SX.T)

and where the dimensionless heat loss a(T) is given implicity by
3.5d dovy - log(l-a) = AT-T,).
Thus, solving 3.5a - 3.5d requires solving the implicit relation 3.5d to obtain a at each point

z; usually one Newton step suffices to update a from the preceding z. Once 3.5a-3.5d has

been solved, then the approximate 2-d solution is



3.5¢ X(zp) = X(2), T(zr) = T, + [4o/y - 2log(l-a+ard))/A

Note that for Arrhenius kinetics, S(X,T) = a(X)e ERT, A issimply E/RT2.

3.1 Comparison with the Beek and Singer model, The only real differsnce between the o-model
3.5a- 3.5¢ and the Beek and Singer model [1,2] is the term 8a/A, which represents the heat loss
through the reactor walls. To compare the two models, consider the case of Arrhenius kinetics.

Then writing the heat loss in terms of an overall heat transfer coefficient U,

3.6 8aRTYE = 2U[T- T ]

shows that U is a function of the dimensionless temperature rise

3.7a ¢ = E(T - T,V/RT?
defined implicitly by

37b L= 2 - log(1 - oUM)
| 07 y Ut e

As shown in figure 1, U(¢) is always a decreasing function of ¢ with
38 U©) = (vl +.25)1.
Thus, the heat transfer always increases sublinearly with T- T,. Now, the Beek and Singer

model is exactly 3.5a, 3.5b with the heat transfer term 8RTZ/E replaced with the linear term

2U(0)[T -T.]. Sothe two models agree when ¢ << 1 (under "mild" conditions), where the



Beek and Singer model is known to be good [5,6]. Moreover, clearly U(¢) should decrease
becaure the heat generation becomes increasingly concentrated near the reactor's centerline r =0

as the temperature rise increases, which rnust lead to a decreased heat transfer efficiency through

the reactor walls.

3.2 Comparison with the 2-d equations, The a-model has been tested against the 2-d equations
for specific physical reactors elsewhere [17]. So here we consider only the example of a first order

Arrhenius reaction A; —» A,, for which
39 SX,T) = (1-X)e"ERT/gERT,

due to the scaling 2.3a. 2.3b.

The worst errors in the a-model generally occur in predicting the maximum value of T(z);
this is not surprising since the reactor's heat balance can be very sensitive at its hot spot. Thus, we
can rapidly evaluate the a-model's accuracy by testing its predictions of the peak value of T(z). To
obtain each graph in figure 2 we fixed the value of Q/n = AT,y and varied n. Foreach n we
solved the original 2-d equations, the a-model, and the Beek and Siuger modei ; we then found
and graphed the maximum value of T(z) from each calculation. Additionally, figure 3 shows the
full X(z) and T(z) curves for an extreme case. In figure 2, we see that significant errors in the
o-model occur only for the least exothermic reaction considered (figure 2d), and then they occur
only when T(z) - T, exceeds 50°K. Note that when T(z) - T, is SO'K, the value of T(zy)- T,
is already a severe 80°K at r=0,

We have tested the a-model on many other examples [16,17]. Our general experience is
that the a-model simulates the original 2-d equations very accurately for highly sensitive reactors
which have sharp runaway transitions as in figures 2a and 2°,; for less sensitive reactors which

have "soft" runaway transitions as in figure 2d, significant errors can occur, but only when the



temperature rise AT is very severe. For example, for a single Arrhenius reaction the accuracy

improves as EA’I’ad/R’I‘c2 increases, as RTJE decreases, and as the reaction order decreases.

3.3. Runaway, Very sophisticated methods have been used to analyze the Beek and Singer model
to develop runaway criteria [4,13]. However, these criteria are necessarily limited by the accuracy
of the Beek and Singer model near runaway (see figure 2). In [18] we obtained a new criterion by
using asymptotic methods based on 1 << 1 tc analyze the more accurate o-model. For the special

case of Arrhenius kinetics
3.10 SX,T) = a(X)e ERT

with the maximum of a(X) occurring at X =0 (positive reaction order), this criterion predicts

runaway when

3ia na(@)e"ERT, > ‘—;fﬂw{l + 2946(1+) l%fﬁ}
Here € and P depend only on the chemical reaction

3.11b € = RTE, P = EAT,y/RT2

and f and g depend only on the Biot number ¥

3lle f = 8p(1-pe~hh, g = (1-yyT-2p+2p?

through

3.11d B(y) = %(wl-ﬁ'f_“)



Note that for equi-molar reactions, la'(0)/a(0)! is just the reaction order,

This criterion can be evaluated readily from peak temperature curves like figures 2a - 2d,
which show the reactor's runav 1y transition quite clearly. In figure 2, the points where equality
occurs in 3.11a have been marked with solid points. For the twn most exothermic reactions in
figure 2, the runaway transition is quite sharp and the runaway criterion is quite accurate. For the
two least exothermic reactions, the transition is not sharp, so the point where runaway first occurs
cannot be defined precisely. In view of this theoretical indeterminacy, the points obtained from

3.11 still seem quite reasonable.

4, Multiple Reactions, Suppose that there are n reactions occurring in the reactor. Then all
concentrations can be expressed in terms of n variables X = (X1, X2, ..., X"), each measuring

the extent of one of the reactions. Similar to 2.4a - 2.4d, the dimensionless reactor equations can

be written as
. Uoui . Lo - .
4.1a X, = TTE(XJ“+ ij") + S, j=1,.,n
1 -
4.1b NTy = T + rTr + Ej:Q'SJ(X.T)

for 0 <r < 1, with the same boundary conditions 2.4c, 2.4d as before. To obtain the ¢-model
we approximate the teinperature dependence of the total heat release X Q5. (X, T) as exponential;
then 2.11 gives the asymptotically correct profiles T(a,r); and substituting these profiles into the

reactor equations and averaging over r yields :

4.2a Xi, = SIXT j=l..n

4.2b nT, = -80/A + TQSIXT
J



where

42c AXT = %\log (2 QISIX,T]

and where « is determined by

4.2d do/y - log(l-) = A(T-T,).
Once 4.2a - 4.2d have been solved, then the approximate 2-d solution is
4.2¢ Xi@zr) = Xiz),  T(zr) = T, + [4o/y- 2log(1-a+ar?)]/A .

This model has been tested with experimentally derived reaction schemes in [17,19]. So
here we consider the example of two first-order Arrhenius reactions A; = A,, A\ = A3, with
the second reaction having twice the activation energy of the first, and with both reactions releasing

equal amounts of heat, so Q! = Q? = Q. We also choose the reaction rates

4.3a SIXT) = .80(1-X!-X2)g E/RTg+ERT,

4.2b SAX.T) = .20(1-X!-X?)@ E/RTg+ERT,

so that the second is 25% of the firstat T = T.. As in figure 2, in figure 4 we graph the peak
value of T(z) as a function o¢ n with Q/n = AT,, held fixed. The accuracy of the a-model for

this case should not be surprising since the reactor is clearly extremely sensitive.

5._Conclusions, The ‘-model and runaway criterion have been tested on many other examples in
[16-19]. In particular, in [18] we observe that the maximum feasible reaction rates occur when the

reactor reaches runaway. So there we use the runaway criterion to determine the theoretical limits



on the reactor's performance.

We have found the a-model, the runaway criterion, and the theoretical limits to be usetul
in rapidly screening potential reactor designs and operating conditions to assess relative reactor
performances and sensitivides. Once the final design and operating conditions have been settled,

we have then solved the 2-d equations to verify the predictions of the model.
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Fi .
Figure 1. The dimensionless heat transfer coefficient U(¢) and heat loss a(¢).

Figure 2. The peak value of T(z) in the reactor as a function of 1. Shown are the predictions of
the a-model (o), the Beek and Singer model (s), and the exact values from the 2-d equations (2).
There are no significant differences between the predictions of the a-model and the 2-d equations
in figures 2a-2c. The valuesof P =EQMRT.? =EAT,y/RT 2 are 40, 20, 12, and 8 ir
figures 2a-2d, respectively. The other parameter values are RTJ/E =.10, y=4.8, T, =500°K,
and Le =1.25.

Figure 3. The axial profiles T(z) and X(z) fromthe a-model (at), the Beek and Singer
model(s), and the exact values (e). The values EAT,/RT 2 =20 and 1 =.12 have been chosen
so that the reactor is very near runaway (see figure 2b), causing a very pronounced hot spot. The
other parameter values are as in figure 2.

Figure 4. The peak value of f(z) in the reactor as a function of 1 for two simultaneous
first-order reactions (see equation 4.3). Shown are the predictions of the «-model (), the Beek
and Singer model (s), and the exact values (¢). There is no discernable difference between the
exact values and the predictions of the o.-model. The parameters are EATM/RTC2 = 20,

RTJ/E =.10, y=4.8, T,=500°K, and Le =1.25.
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